Para referência: Confira meu artigo anterior onde discuto alta disponibilidade do pool de conexões, “Alta Disponibilidade do Pool de Conexões com CockroachDB e PgCat.”
Motivação
O balanceador de carga é uma peça central da arquitetura do CockroachDB. Dada sua importância, gostaria de discutir os métodos para superar os cenários de SPOF.
Etapas de Alto Nível
- Inicie o CockroachDB e o HAProxy no Docker
- Execute uma carga de trabalho
- Demonstre tolerância a falhas
- Conclusão
Instruções Passo a Passo
Inicie o CockroachDB e o HAProxy no Docker
I have a Docker Compose environment with all of the necessary services here. Primarily, we are adding a second instance of HAProxy and overriding the ports not to overlap with the existing load balancer in the base Docker Compose file.
I am in the middle of refactoring my repo to remove redundancy and decided to split up my Compose files into a base docker-compose.yml
and any additional services into their own YAML files.
lb2: container_name: lb2 hostname: lb2 build: haproxy ports: - "26001:26000" - "8082:8080" - "8083:8081" depends_on: - roach-0 - roach-1 - roach-2
Para acompanhar, você deve iniciar o ambiente Compose com o comando:
docker compose -f docker-compose.yml -f docker-compose-lb-high-availability.yml up -d --build
Você verá a seguinte lista de serviços:
✔ Network cockroach-docker_default Created 0.0s ✔ Container client2 Started 0.4s ✔ Container roach-1 Started 0.7s ✔ Container roach-0 Started 0.6s ✔ Container roach-2 Started 0.5s ✔ Container client Started 0.6s ✔ Container init Started 0.9s ✔ Container lb2 Started 1.1s ✔ Container lb Started
O diagrama abaixo representa toda a topologia do cluster:
Executar uma Carga de Trabalho
Neste ponto, podemos conectar-nos a um dos clientes e inicializar a carga de trabalho. Estou usando tpcc porque é uma boa carga de trabalho para demonstrar tráfego de escrita e leitura.
cockroach workload fixtures import tpcc --warehouses=10 'postgresql://root@lb:26000/tpcc?sslmode=disable'
Em seguida, podemos iniciar a carga de trabalho a partir dos dois contêineres de clientes.
- Balanceador de Carga 1:
cockroach workload run tpcc --duration=120m --concurrency=3 --max-rate=1000 --tolerate-errors --warehouses=10 --conns 30 --ramp=1m --workers=100 'postgresql://root@lb:26000/tpcc?sslmode=disable'
- Balanceador de Carga 2:
cockroach workload run tpcc --duration=120m --concurrency=3 --max-rate=1000 --tolerate-errors --warehouses=10 --conns 30 --ramp=1m --workers=100 'postgresql://root@lb2:26000/tpcc?sslmode=disable'
Você verá uma saída semelhante a esta.
488.0s 0 1.0 2.1 44.0 44.0 44.0 44.0 newOrder 488.0s 0 0.0 0.2 0.0 0.0 0.0 0.0 orderStatus 488.0s 0 2.0 2.1 11.0 16.8 16.8 16.8 payment 488.0s 0 0.0 0.2 0.0 0.0 0.0 0.0 stockLevel 489.0s 0 0.0 0.2 0.0 0.0 0.0 0.0 delivery 489.0s 0 2.0 2.1 15.2 17.8 17.8 17.8 newOrder 489.0s 0 1.0 0.2 5.8 5.8 5.8 5.8 orderStatus
Os logs de cada instância do HAProxy mostrarão algo como isto:
192.168.160.1:60584 [27/Apr/2023:14:51:39.927] stats stats/<STATS> 0/0/0 28724 LR 2/2/0/0/0 0/0 192.168.160.1:60584 [27/Apr/2023:14:51:39.927] stats stats/<STATS> 0/0/816 28846 LR 2/2/0/0/0 0/0 192.168.160.1:60584 [27/Apr/2023:14:51:40.744] stats stats/<STATS> 0/0/553 28900 LR 2/2/0/0/0 0/0 192.168.160.1:60584 [27/Apr/2023:14:51:41.297] stats stats/<STATS> 0/0/1545 28898 LR 2/2/0/0/0 0/0 192.168.160.1:60582 [27/Apr/2023:14:51:39.927] stats stats/<NOSRV> -1/-1/61858 0 CR 2/2/0/0/0 0/0
O HAProxy expõe uma interface web no porto 8081. Como temos duas instâncias do HAProxy, expus a segunda instância no porto 8083.
Demonstre Tolerância a Falhas
Agora podemos começar a encerrar as instâncias do HAProxy para demonstrar tolerância a falhas. Vamos começar com a instância 1.
docker kill lb lb
O trabalho começará a gerar mensagens de erro.
7 17:41:18.758669 357 workload/pgx_helpers.go:79 [-] 60 + RETURNING d_tax, d_next_o_id] W230427 17:41:18.758737 357 workload/pgx_helpers.go:123 [-] 61 error preparing statement. name=new-order-1 sql= W230427 17:41:18.758737 357 workload/pgx_helpers.go:123 [-] 61 + UPDATE district W230427 17:41:18.758737 357 workload/pgx_helpers.go:123 [-] 61 + SET d_next_o_id = d_next_o_id + 1 W230427 17:41:18.758737 357 workload/pgx_helpers.go:123 [-] 61 + WHERE d_w_id = $1 AND d_id = $2 W230427 17:41:18.758737 357 workload/pgx_helpers.go:123 [-] 61 + RETURNING d_tax, d_next_o_id unexpected EOF 142.0s 3 0.0 0.2 0.0 0.0 0.0 0.0 delivery 142.0s 3 0.0 2.2 0.0 0.0 0.0 0.0 newOrder 142.0s 3 0.0 0.2 0.0 0.0 0.0 0.0 orderStatus 142.0s 3 0.0 2.2 0.0 0.0 0.0 0.0 payment
Nosso trabalho ainda está funcionando usando a conexão HAProxy 2.
Vamos trazê-lo de volta:
docker start lb
Observe que o cliente reconecta e continua com o trabalho.
335.0s 1780 0.0 0.1 0.0 0.0 0.0 0.0 stockLevel _elapsed___errors__ops/sec(inst)___ops/sec(cum)__p50(ms)__p95(ms)__p99(ms)_pMax(ms) 336.0s 1780 0.0 0.1 0.0 0.0 0.0 0.0 delivery 336.0s 1780 7.0 1.1 19.9 27.3 27.3 27.3 newOrder 336.0s 1780 0.0 0.1 0.0 0.0 0.0 0.0 orderStatus 336.0s 1780 2.0 1.0 10.5 11.0 11.0 11.0 payment 336.0s 1780 0.0 0.1 0.0 0.0 0.0 0.0 stockLevel 337.0s 1780 0.0 0.1 0.0 0.0 0.0 0.0 delivery 337.0s 1780 7.0 1.1 21.0 32.5 32.5 32.5 ne
O número de instruções executadas aumenta após o segundo cliente se conectar com sucesso.
Agora podemos fazer o mesmo com a segunda instância. Da mesma forma, o trabalho relata erros de que não consegue encontrar o host lb2
.
0.0 0.2 0.0 0.0 0.0 0.0 stockLevel I230427 17:48:28.239032 403 workload/pgx_helpers.go:79 [-] 188 pgx logger [error]: connect failed logParams=map[err:lookup lb2 on 127.0.0.11:53: no such host] I230427 17:48:28.267355 357 workload/pgx_helpers.go:79 [-] 189 pgx logger [error]: connect failed logParams=map[err:lookup lb2 on 127.0.0.11:53: no such host]
E podemos observar a queda no número de instruções.
Podemos trazê-lo de volta:
docker start lb2
Uma coisa que podemos melhorar é iniciar o trabalho com ambas as strings de conexão. Isso permitirá que cada cliente retorne à outra instância de pgurl mesmo quando uma das instâncias do HAProxy estiver inoperante. O que temos que fazer é parar ambos os clientes e reiniciar com ambas as strings de conexão.
cockroach workload run tpcc --duration=120m --concurrency=3 --max-rate=1000 --tolerate-errors --warehouses=10 --conns 30 --ramp=1m --workers=100 'postgresql://root@lb:26000/tpcc?sslmode=disable' 'postgresql://root@lb2:26000/tpcc?sslmode=disable'
I am going to do that one client at a time so that the workload does not exit completely.
Em nenhum momento deste experimento perdemos a capacidade de ler/escrever para e do cluster. Vamos desligar uma das instâncias do HAProxy novamente e ver o impacto.
docker kill lb lb
I’m now seeing errors across both clients, but both clients are still executing.
.817268 1 workload/cli/run.go:548 [-] 85 error in stockLevel: lookup lb on 127.0.0.11:53: no such host _elapsed___errors__ops/sec(inst)___ops/sec(cum)__p50(ms)__p95(ms)__p99(ms)_pMax(ms) 156.0s 49 0.0 0.2 0.0 0.0 0.0 0.0 delivery 156.0s 49 1.0 2.1 31.5 31.5 31.5 31.5 newOrder 156.0s 49 0.0 0.2 0.0 0.0 0.0 0.0 orderStatus 156.0s 49 1.0 2.0 12.1 12.1 12.1 12.1 payment 156.0s 49 0.0 0.2 0.0 0.0 0.0 0.0 stockLevel I230427 17:55:58.558209 354 workload/pgx_helpers.go:79 [-] 86 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host] I230427 17:55:58.698731 346 workload/pgx_helpers.go:79 [-] 87 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host] I230427 17:55:58.723643 386 workload/pgx_helpers.go:79 [-] 88 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host] I230427 17:55:58.726639 370 workload/pgx_helpers.go:79 [-] 89 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host] I230427 17:55:58.789717 364 workload/pgx_helpers.go:79 [-] 90 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host] I230427 17:55:58.841283 418 workload/pgx_helpers.go:79 [-] 91 pgx logger [error]: connect failed logParams=map[err:lookup lb on 127.0.0.11:53: no such host]
Podemos trazê-lo de volta e notar a recuperação do trabalho.
Conclusão
Ao longo do experimento, não perdemos a capacidade de ler e escrever no banco de dados. Houve quedas no tráfego, mas isso é esperado. A lição aqui é fornecer uma configuração altamente disponível onde os clientes podem ver múltiplas conexões.
Source:
https://dzone.com/articles/load-balancer-high-availability-with-cockroachdb-a