Step-By-Step Guide To Setting up and Training GANs for Image Generation

Here is a basic tutorial on setting up and training image generation models using Generative Adversarial Networks (GANs) with TensorFlow and PyTorch. This guide assumes a fundamental understanding of Python and basic machine learning concepts.

1. Setting up Your Environment

Install Necessary Libraries

Ensure you have Python installed. You will also need to install TensorFlow or PyTorch along with some other essential libraries.

For TensorFlow:

Shell

 

pip install tensorflow numpy matplotlib

For PyTorch:

Shell

 

pip install torch torchvision numpy matplotlib

Import Libraries

Python

 

import numpy as np
import matplotlib.pyplot as plt

# For TensorFlow
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Flatten, Conv2D, Conv2DTranspose, LeakyReLU, Dropout
from tensorflow.keras.models import Sequential

# For PyTorch
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

2. Load and Prepare the Dataset

Using the MNIST dataset as an example.

For TensorFlow:

Python

 

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5  # Normalize to [-1, 1]
BUFFER_SIZE = 60000
BATCH_SIZE = 256
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

For PyTorch:

Python

 

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)

3. Define the GAN Architecture

Generator Model

For TensorFlow:

Python

 

def make_generator_model():
    model = Sequential()
    model.add(Dense(7*7*256, use_bias=False, input_shape=(100,)))
    model.add(LeakyReLU())
    model.add(Reshape((7, 7, 256)))
    model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
    model.add(LeakyReLU())
    model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    model.add(LeakyReLU())
    model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    return model

For PyTorch:

Python

 

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            nn.ConvTranspose2d(100, 256, 7, 1, 0, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False),
            nn.Tanh()
        )

    def forward(self, input):
        return self.main(input)

Discriminator Model

For TensorFlow:

Python

 

def make_discriminator_model():
    model = Sequential()
    model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))
    model.add(LeakyReLU())
    model.add(Dropout(0.3))
    model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(LeakyReLU())
    model.add(Dropout(0.3))
    model.add(Flatten())
    model.add(Dense(1))
    return model

For PyTorch:

Python

 

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(1, 64, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, 4, 2, 1, bias=False),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, 4, 2, 1, bias=False),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

4. Define the Loss and Optimizers

For TensorFlow:

Python

 

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss

def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

generator = make_generator_model()
discriminator = make_discriminator_model()

generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

For PyTorch:

Python

 

criterion = nn.BCELoss()
fixed_noise = torch.randn(64, 100, 1, 1, device=device)
real_label = 1.
fake_label = 0.

optimizerD = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))

5. Training the GAN

For TensorFlow:

Python

 

EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16

seed = tf.random.normal([num_examples_to_generate, noise_dim])

@tf.function
def train_step(images):
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise, training=True)

        real_output = discriminator(images, training=True)
        fake_output = discriminator(generated_images, training=True)

        gen_loss = generator_loss(fake_output)
        disc_loss = discriminator_loss(real_output, fake_output)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):
    for epoch in range(epochs):
        for image_batch in dataset:
            train_step(image_batch)

        display.clear_output(wait=True)
        generate_and_save_images(generator, epoch + 1, seed)

        print ('Epoch {} completed'.format(epoch+1))

def generate_and_save_images(model, epoch, test_input):
    predictions = model(test_input, training=False)

    fig = plt.figure(figsize=(4, 4))

    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i+1)
        plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
        plt.axis('off')

    plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
    plt.show()

train(train_dataset, EPOCHS)

For PyTorch:

Python

 

num_epochs = 5

for epoch in range(num_epochs):
    for i, data in enumerate(train_loader, 0):
        # Update Discriminator: maximize log(D(x)) + log(1 - D(G(z)))
        discriminator.zero_grad()
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
        output = discriminator(real_cpu).view(-1)
        errD_real = criterion(output, label)
        errD_real.backward()
        D_x = output.mean().item()

        noise = torch.randn(b_size, 100, 1, 1, device=device)
        fake = generator(noise)
        label.fill_(fake_label)
        output = discriminator(fake.detach()).view(-1)
        errD_fake = criterion(output, label)
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        errD = errD_real + errD_fake
        optimizerD.step()

        # Update Generator: maximize log(D(G(z)))
        generator.zero_grad()
        label.fill_(real_label)
        output = discriminator(fake).view(-1)
        errG = criterion(output, label)
        errG.backward()
        D_G_z2 = output.mean().item()
        optimizerG.step()

        if i % 100 == 0:
            print(f'[{epoch}/{num_epochs}][{i}/{len(train_loader)}] '
                  f'Loss_D: {errD.item():.4f} Loss_G: {errG.item():.4f} '
                  f'D(x): {D_x:.4f} D(G(z)): {D_G_z1:.4f} / {D_G_z2:.4f}')

    with torch.no_grad():
        fake = generator(fixed_noise).detach().cpu()
    plt.figure(figsize=(10,10))
    plt.axis("off")
    plt.title("Fake Images")
    plt.imshow(np.transpose(vutils.make_grid(fake, padding=2, normalize=True).cpu(),(1,2,0)))
    plt.show()

These tutorials provide a starting point for setting up and training basic GAN models in both TensorFlow and PyTorch. Adjusting parameters and exploring more complex architectures can further enhance the understanding and results.

Source:
https://dzone.com/articles/step-by-step-guide-to-setting-up-and-training