Dit is een basishandleiding over het opzetten en trainen van modellen voor het genereren van afbeeldingen met behulp van Generative Adversarial Networks (GANs) met TensorFlow en PyTorch. Deze handleiding gaat uit van een basiskennis van Python en basisconcepten van machinaal leren.
1. Uw omgeving instellen
Installeer de benodigde bibliotheken
Zorg ervoor dat Python is geïnstalleerd. U moet ook TensorFlow of PyTorch installeren, samen met enkele andere essentiële bibliotheken.
Voor TensorFlow:
pip install tensorflow numpy matplotlib
Voor PyTorch:
pip install torch torchvision numpy matplotlib
Bibliotheken importeren
import numpy as np
import matplotlib.pyplot as plt
#Voor TensorFlow
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Flatten, Conv2D, Conv2DTranspose, LeakyReLU, Dropout
from tensorflow.keras.models import Sequential
#Voor PyTorch
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
2. De dataset laden en voorbereiden
Met de MNIST-dataset als voorbeeld.
Voor TensorFlow:
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize to [-1, 1]
BUFFER_SIZE = 60000
BATCH_SIZE = 256
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
Voor PyTorch:
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
3. Definieer de GAN-architectuur
Generatormodel
Voor TensorFlow:
def make_generator_model():
model = Sequential()
model.add(Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(LeakyReLU())
model.add(Reshape((7, 7, 256)))
model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
model.add(LeakyReLU())
model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(LeakyReLU())
model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
return model
Voor PyTorch:
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(100, 256, 7, 1, 0, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 1, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
Discriminatormodel
Voor TensorFlow:
def make_discriminator_model():
model = Sequential()
model.add(Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))
model.add(LeakyReLU())
model.add(Dropout(0.3))
model.add(Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(LeakyReLU())
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(1))
return model
Voor PyTorch:
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(1, 64, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, 2, 1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
4. Definieer het verlies en de optimalisatoren
Voor TensorFlow:
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator = make_generator_model()
discriminator = make_discriminator_model()
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
Voor PyTorch:
criterion = nn.BCELoss()
fixed_noise = torch.randn(64, 100, 1, 1, device=device)
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
5. Het GAN trainen
Voor TensorFlow:
EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16
seed = tf.random.normal([num_examples_to_generate, noise_dim])
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
display.clear_output(wait=True)
generate_and_save_images(generator, epoch + 1, seed)
print ('Epoch {} completed'.format(epoch+1))
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
train(train_dataset, EPOCHS)
Voor PyTorch:
num_epochs = 5
for epoch in range(num_epochs):
for i, data in enumerate(train_loader, 0):
# Update Discriminator: maximaliseer log(D(x)) + log(1 - D(G(z)))
discriminator.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
output = discriminator(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(b_size, 100, 1, 1, device=device)
fake = generator(noise)
label.fill_(fake_label)
output = discriminator(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# Update Generator: maximaliseer log(D(G(z)))
generator.zero_grad()
label.fill_(real_label)
output = discriminator(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if i % 100 == 0:
print(f'[{epoch}/{num_epochs}][{i}/{len(train_loader)}] '
f'Loss_D: {errD.item():.4f} Loss_G: {errG.item():.4f} '
f'D(x): {D_x:.4f} D(G(z)): {D_G_z1:.4f} / {D_G_z2:.4f}')
with torch.no_grad():
fake = generator(fixed_noise).detach().cpu()
plt.figure(figsize=(10,10))
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(vutils.make_grid(fake, padding=2, normalize=True).cpu(),(1,2,0)))
plt.show()
Deze tutorials bieden een startpunt voor het opzetten en trainen van basis GAN-modellen in zowel TensorFlow als PyTorch. Het aanpassen van parameters en het verkennen van complexere architecturen kan het begrip en de resultaten verder verbeteren.
Source:
https://dzone.com/articles/step-by-step-guide-to-setting-up-and-training